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Abstract. We discuss a practical formulation of backward evolution for the CCFM small-x evolution equa-
tion and show results from its implementation in the new Monte Carlo event-generator Cascade.

1 Introduction

In recent years a wealth of experimental results has be-
come available from HERA concerning structure functions
and final-state properties in deep inelastic collisions (DIS)
at small Bjorken x and moderate Q2 and this has led to
interest in theoretical descriptions and predictions of the
phenomena that are observed.

DIS at moderate values of x is well described by re-
summations of leading logarithms of transverse momenta
(αs lnQ2)n, generally referred to as DGLAP physics [1–
4]. At small x we expect leading-logs of longitudinal mo-
menta, (αs lnx)n, to become equally if not more impor-
tant. However, while the understanding of DGLAP re-
summations has been mature for some time now, despite
considerable effort small-x resummations still remain the
subject of many theoretical uncertainties and technical
difficulties.

Since many of the measurements at HERA involve
complex cuts and multi-particle final states, the ideal form
for any theoretical description of the data is a Monte
Carlo event-generator which embodies small-x resumma-
tions, in analogy with event generators such as LEPTO
[5], PYTHIA [6], HERWIG [7,8] and RAPGAP [9] which
embody DGLAP resummations.

In order to build such an event generator two ingre-
dients are required. Firstly one needs to know the un-
derlying parton branching equation which, when iterated
over many branchings, reproduces the correct leading log-
arithms. Secondly one has to find an efficient way of imple-
menting the branching equation into a Monte Carlo event
generator.

As it happens there are several branching equations
which are advocated by various groups as suitable for de-
scribing both inclusive and exclusive properties of small-x
DIS. The main purpose of this article is to discuss how
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to formulate one of these equations, the CCFM equa-
tion [10–13] in a manner suitable for carrying out a back-
ward evolution. This is an almost essential requirement if
one wishes to efficiently generate unweighted Monte Carlo
events and modern DGLAP based Monte Carlo generators
are always based on backward evolution approaches [14–
16]. One of the main results of this paper is that despite
the fact that the CCFM equation is considerably more
complicated than the DGLAP equation, it is possible to
cast the backward evolution in a form which looks quite
similar to the normal DGLAP approach. We then show
predictions obtained from a new Monte Carlo event gen-
erator, Cascade, which implements the backward evolu-
tion, and compare them with HERA data.

The paper is structured as follows: in Sect. 2 we discuss
briefly the reasons for choosing the CCFM equation for
the underlying branching. Then in Sect. 3 we discuss the
CCFM equation itself, and review some details of its im-
plementation in the forward-evolution Monte Carlo event-
generator Smallx [17,18], which has been used to gener-
ate the unintegrated gluon distribution required by the
backward evolution. In Sect. 4 we discuss the backward
evolution itself, and then in Sect. 5 show some results.

2 Why CCFM?

There are three equations which are commonly used for
predictions in small-x DIS: the BFKL equation [19–21],
the CCFM equation [10–13] and the LDC equation [22–
25].

The BFKL and CCFM approaches are known to repro-
duce the correct small-x leading logarithms for the total
cross section. For final-state properties, the derivation of
the BFKL equation is such that it is not able to guaran-
tee the correctness of the small-x logarithms. On the other
hand the derivation of the CCFM equation, based on the
principle of colour coherence, is such that it guarantees
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the correct leading logarithms for all final-state observ-
ables. (It so happens that the CCFM equation also gives
a correct description of the final state in the limit x → 1,
another region particularly sensitive to coherence effects,
however this is not relevant for our purposes).

This was the situation until a couple of years ago. Re-
cently however it was shown that BFKL gives identical
leading logarithms of x to CCFM for all final-state observ-
ables [26–28] (the physical reasons for this are not fully
understood). Since the BFKL equation is quite simple
(compared to CCFM) one might think that this opens the
way to a BFKL-based Monte Carlo for DIS. But from the
point of view of a sensible description of exclusive quan-
tities, it is not just the leading logarithms which matter.
For example with the current state of the art, one has
two options when implementing the BFKL equation in
a event generator for DIS. One possibility is to use x as
the evolution variable — but it turns out that for some
observables this introduces a weak (but pathological) de-
pendence on one’s infrared cutoff in the subleading log-
arithms of x, αp

s (αs lnx)n (p > 0) [28]. The second way
of implementing BFKL, which resolves this problem, is to
use rapidity as the evolution variable. But this turns out
to be at the expense of introducing subleading logarithms
(αs ln2Q2)n which violate renormalisation group consid-
erations1. Specifically DGLAP, CCFM and BFKL with x
as the evolution variable all predict that F2 at small x and
large Q2 should behave as

F2(x,Q2) ∼ exp
(
2
√
ᾱs lnQ ln 1/x

)
(where ᾱs = αsCA/π and we use fixed αs for the purposes
of illustration). For BFKL with rapidity as the evolution
variable one has to substitute ln 1/x with the rapidity dif-
ference between the two ends of the chain ∆η � lnQ/x,
and this leads to F2 behaving as

F2(x,Q2) ∼ exp
(
2
√
ᾱs lnQ ln 1/x+ ᾱs ln2Q

)
,

in contradiction to the DGLAP result.
The CCFM equation does not suffer from these prob-

lems and so forms a good basis for an event generator.
This does not mean that the CCFM equation embodies
all of our knowledge about small-x branching, in particu-
lar it is known to be incomplete in regions of phase space
where there is collinear or anti-collinear branching. Fur-
thermore it was discovered in [32] that seemingly small
modifications of the equation can lead to big differences
in its predictions. Specifically in a version of the equation
without the 1/(1 − z) part of the splitting function, the
replacement of Θ(kt − q) with Θ(kt − (1− z)q) in the non-
Sudakov form factor, (12), was instrumental in enabling a
fit to F2. However around the same time the exact next-
to-leading logarithmic (NLL) corrections to small-x evo-
lution, terms αs(αs lnx)n, became available [33,34]: they

1 For certain restricted applications in hadron-hadron scat-
tering, where BFKL generators have been advocated and de-
veloped [29–31], these double-logarithms may not be too im-
portant because of the nature of the observables studied

state that the power ω governing the growth of quantities
like the forward-jet cross section at small x should have an
expansion ω = 4 ln 2ᾱs −18.4ᾱ2

s + . . . (for nf = 4). On the
other hand the version of the CCFM equation with the re-
placement Θ(kt−q) → Θ(kt−(1−z)q) in the non-Sudakov
form factor leads to ω = 4 ln 2ᾱs − (75± 4)ᾱ2

s + . . ., which
is quite incompatible with the known expansion [33,34]
and so this variant of the CCFM equation can be ruled
out. The version of the CCFM equation that is studied
here has ω = 4 ln 2ᾱs − (9.2 ± 0.5)ᾱ2

s + . . . [35] — i.e. its
NLL corrections are somewhat smaller than the true NLL
corrections, however they are at least of the right order of
magnitude.

There exists also a third evolution equation, the Linked
Dipole Chain (LDC) [22–25], whose characteristic is that
some of the initial state radiation has been moved into
the final state. This has two consequences — on one hand
the simplifications that ensue mean that it is quite easy
to correctly implement a symmetry between branching up
and down in transverse scale (or equivalently one obtains
the same predictions whether one evolves from the virtual
photon or from the proton). Such a symmetry leads to
the implicit inclusion of important NLL terms associated
with large transverse logs in the anti-collinear limit (terms
ᾱ2

s/(1 − γ)3 where γ is the Mellin variable conjugate to
squared transverse momentum). These terms are entirely
missing from standard LL BFKL, while in CCFM they are
present, but with half the correct coefficient2. The second
consequence of the manner in which initial state radiation
has been moved into the final state, is that the LDC has
slightly different small-x leading logs compared to BFKL
(ω � 3.23ᾱs+. . . for LDC as compared to ω � 2.77ᾱs+. . .
for BFKL and CCFM — it is possible though to modify
LDC so that it has leading logs which are much closer to
the BFKL ones [37]). Therefore LDC has both advantages
and disadvantages compared to CCFM. The question of
which matters more will almost certainly depend on the
nature of the observable under study.

So there remains much room for further theoretical
progress in the description of small-x evolution. However
given the current situation, one of the more viable options
is the CCFM equation, hence our interest in implementing
a practical CCFM-based event generator.

3 The CCFM evolution equation

The implementation of CCFM [10–13] parton evolution
in the forward evolution Monte Carlo program Smallx is
described in detail in [17,18]. Here we only concentrate
on the basic ideas and discuss the new treatment of the
non-Sudakov form factor [38,39].

Figure 1 shows the pattern of QCD initial-state radi-
ation in a small-x DIS event, together with labels for the

2 There have been attempts to implement the so-called kine-
matic constraint [10,22,36], which in BFKL does lead to the
correct NLL behaviour for γ → 1. But in CCFM the situation
is more subtle and a straightforward inclusion of the kinematic
constraint still gives the wrong γ → 1 limit
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Fig. 1. Kinematic variables for multi-gluon emission. The t-
channel gluon four-vectors are given by ki and the gluons emit-
ted in the initial state cascade have four-vectors pi. The upper
angle for any emission is obtained from the quark box, as in-
dicated with Ξ

kinematics. According to the CCFM evolution equation,
the emission of partons during the initial cascade is only
allowed in an angular-ordered region of phase space. The
maximum allowed angle Ξ is defined by the hard scatter-
ing quark box3, which connects the gluon to the virtual
photon. In terms of Sudakov variables the quark pair mo-
mentum is written as:

pq + pq̄ = Y (pp +Ξpe) +Qt (1)

where pp and pe are the proton and electron momenta,
respectively and Qt is the transverse momentum of the
quark pair. Similarly, the momenta pi of the gluons emit-
ted during the initial state cascade are given by (here
treated massless):

pi = yi(pp + ξipe) + pti , ξi =
p2

ti

sy2
i

, (2)

with yi = (1− zi)xi−1 and xi = zixi−1 and s = (pp+ pe)2
being the total electron proton center of mass energy. The
variable ξi is connected to the angle of the emitted gluon
with respect to the incoming proton and xi and yi are
the momentum fractions of the exchanged and emitted
gluons, while zi is the momentum fraction in the branching
(i − 1) → i and pti is the transverse momentum of the
emitted gluon.

The angular-ordered region is then specified by:

ξ0 < ξ1 < · · · < ξn < Ξ (3)

3 Strictly there are two maximum angles, corresponding to
the directions of the quark and the anti-quark, and which each
limit roughly one half of the radiation

which becomes:
zi−1qti−1 < qti (4)

where we use the rescaled transverse momenta qti of the
emitted gluons defined by:

qti = xi−1
√
sξi =

pti

1− zi
. (5)

In Smallx, the initial state gluon cascade is generated
in a forward evolution approach from an initial distribu-
tion of the kt unintegrated gluon distribution according
to:

xA0(x, k2
t0) = N · 5 1

k2
0
(1− x)4 · exp (−k2

t0/k
2
0
)

(6)

where N is a normalization constant. The exponential dis-
tribution in k2

t has a width which will be set to k
2
0 =

1 GeV2. The input gluon distribution needs to be adjusted
to fit existing data, but it turns out that the small x be-
haviour of the structure function F2 is rather insensitive
to the actual choice of xA0(x, k2

t0) and only the normal-
ization N acts as a free parameter, with the constraint:∫

xA0(x, k2
t0)dxdk

2
t0 =

∫
xG0(x,Q2)dx � 0.5 (7)

which gives:∫
xA0(x, k2

t0)dxdk
2
t0 = N · 5 ·

∫
(1− x)4dx = N . (8)

The initial state branching of a gluon ki into another
virtual (t-channel) gluon ki+1 and a final gluon pi+1
(treated on mass shell) is generated iteratively from the
initial gluon distribution at a starting scale Q0. The prob-
ability for successive branchings to occur is given by the
CCFM splitting function [10–13]:

dPi = P̃ i
g(zi, q

2
i , k

2
ti)·∆sdzi

d2qi
πq2i

·Θ(qi−ziqi−1)·Θ(1−zi−εi)
(9)

with qi = pti/(1 − zi) being the rescaled transverse mo-
mentum of the emitted gluon i. The fractional energy of
the exchanged gluon i is given by xi and the energy trans-
fer between the exchanged gluons i − 1 and i is given by
zi = xi/xi−1. A collinear cutoff εi = Q0/qi is introduced
to regularize the 1/(1− z) singularity. The Sudakov form
factor ∆s is given by:

∆s(qi, ziqi−1) = exp

(
−
∫ q2

i

(zi−1qi−1)2

dq2

q2

∫ 1−Q0/q

0
dz

× ᾱs(q2(1− z)2)
1− z

)
(10)

with ᾱs = CAαs

π = 3αs

π . For inclusive quantities at leading-
logarithmic order the Sudakov form factor cancels against
the 1/(1 − z) collinear singularity of the splitting func-
tion. Coherence effects are taken into account by angular
ordering qi > zi−1qi−1 given by the first Θ function in (9).
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The cascade continues until qi reaches the limiting angle
defined by q̄ = xn

√
sΞ, set by the partons from the hard

scattering matrix element.
The gluon splitting function P̃ i

g is given by
4:

P̃ i
g =

ᾱs(q2i (1− zi)2)
1− zi

+
ᾱs(k2

ti)
zi

∆ns(zi, q
2
i , k

2
ti) (11)

where the non-Sudakov form factor ∆ns is defined as:

log∆ns = −ᾱs(k2
ti)
∫ 1

0

dz′

z′

∫
dq2

q2
Θ(kti − q)Θ(q − z′qti) .

(12)
The principal difference compared to the corresponding
DGLAP splitting function is the appearance of the non-
Sudakov form factor ∆ns, which screens the 1/z singular-
ity in (11). It can be expressed as [36]:

log∆ns = −ᾱs(k2
ti) log

(
z0
zi

)
log
(

k2
ti

z0ziq2i

)
(13)

where

z0 =



1 ifkti/qi > 1
kti/qi ifzi < kti/qi ≤ 1
zi ifkti/qi ≤ zi

which means that in the region kti/qi ≤ zi we have ∆ns =
1, giving no suppression at all5.

The CCFM equation for the unintegrated gluon den-
sity can be written [13,32,36] as an integral equation:

A(x, kt, q̄) = A0(x, kt, q̄) +
∫

dz

z

∫
d2q

πq2
Θ(q̄ − zq)

×∆s(q̄, zq)P̃ (z, q, kt)A
(x
z
, k′

t, q
)

(14)

with k′
t = |kt + (1 − z)q| and with q̄ being the upper

scale for the last angle of the emission: q̄ > znqn, qn >
zn−1qn−1,..., q1 > Q0. As before q is used as a short-
hand notation for the 2-dimensional vector of the rescaled
transverse momentum q ≡ qt = pt/(1− z). The splitting
function P̃ (z, q, kt) is defined in (11) and the Sudakov form
factor ∆s(q̄, zq) is given in (10).

In [13] a differential form of the CCFM evolution equa-
tion is given, which is obtained from (14) by dividing both
sides by ∆s(q̄, Q0) and then differentiating with respect to
q̄:

q̄2
d

dq̄2
xA(x, kt, q̄)
∆s(q̄, Q0)

=
∫
dz
dφ

2π
P̃ (z, q̄/z, kt)
∆s(q̄, Q0)

x′A(x′, k′
t, q̄/z) (15)

4 Actually the ‘correct’ scale for αs, as suggested by the NLL
corrections to BFKL, is probably q2

i (1−zi)2 in both terms, with
a corresponding modification of the non-Sudakov form factor.
However for simplicity, at this stage we have retained the scale
for αs that was present in the original formulation of Smallx

5 We note that in the original version of Smallx a simpli-
fied version of the non-Sudakov form factor was used, which
however did not give the right answer for kt < q

with x′ = x/z and k′
t = |(1− z)/zq+kt| and where q has

an azimuthal angle φ. In deriving this equation we have
exploited the fact that the Sudakov form factor can be
written as

∆s(q̄, zq) =
∆s(q̄, Q0)
∆s(zq,Q0)

. (16)

For (15) (and the backward evolution formalism which
follows from it) to be correct A0(x, kt, q̄), must be of the
form

A0(x, kt, q̄) = A0(x, kt)∆s(q̄, Q0) . (17)

4 Backward evolution: CCFM and Cascade

The forward evolution procedure as implemented in
Smallx is a direct way of solving the CCFM evolution
equation including the correct treatment of the kinemat-
ics in each branching. However the forward evolution is
rather time consuming, since in each branching a weight
factor is associated, and only after the initial state cascade
has been generated completely can it be decided whether
the kinematics allow the generation of the hard scattering
process. Quite often, a complete event has to be rejected.

A more efficient procedure to adopt in a full hadron-
level Monte Carlo generator is a backward evolution
scheme, analogous to that used in standard Monte Carlo
programs [15,14,7] using a DGLAP type parton cascade.
The idea is to first generate the hard scattering process
with the initial parton momenta distributed according to
the parton distribution functions. This involves in general
only a fixed number of degrees of freedom, and the hard
scattering process can be generated quite efficiently. Then,
the initial state cascade is generated by going backwards
from the hard scattering process towards the beam parti-
cles. In a DGLAP type cascade the evolution (ordering) is
done usually in the virtualities of the exchanged t-channel
partons.

According to the CCFM equation the probability of
finding a gluon in the proton depends on three variables,
the momentum fraction x, the transverse momentum
squared k2

t of the exchanged gluons and the maximum
angle allowed for any emission q̄ = xn

√
sΞ. To calculate

this probability, in addition to the details of the splitting,
(9) one needs to know the unintegrated gluon distribution
A(x, k, q̄) which has to be determined beforehand.

Given this distribution, the generation of a full
hadronic event has three steps, implemented in a new
hadron-level Monte Carlo program, Cascade:

• Firstly, the hard scattering process is generated,

σ =
∫
dk2

t dxgA(xg, k
2
t , q̄)σ(γ

∗g∗ → qq̄) , (18)

using the off-shell matrix elements given in [40, p. 178
ff], with the gluon momentum (in Sudakov representa-
tion):

k = xgpp + x̄gpe + kt � xgpp + kt . (19)

The gluon virtuality is then −k2 � k2
t .
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• The initial state cascade is generated according to
CCFM in a backward evolution approach (described in
the next section).

• The hadronisation is performed using the Lund string
fragmentation implemented in JETSET [41].

Strictly speaking, before the last step one should also
include angular-ordered final-state radiation from the ini-
tial state gluons. For simplicity, in this ‘proof of concept’
version of the generator, this is currently left out.

In the backward evolution there is one difficulty: The
gluon virtuality enters in the hard scattering process and
also influences the kinematics of the produced quarks and
therefore the maximum angle allowed for any further emis-
sion in the initial state cascade. This virtuality is only
known after the whole cascade has been generated, since it
depends on the history of the gluon evolution. In the evo-
lution equations itself it does not enter, since there only
the longitudinal energy fractions zi and the transverse mo-
menta are involved. This problem can only approximately
be overcome by using k2 = k2

t /(1 − xg) for the virtuality
which is correct in the case of no further gluon emission
in the initial state.

The Monte Carlo program Cascade can be used to
generate unweighted full hadron-level events, including
initial-state parton evolution according to the CCFM
equation and the off-shell matrix elements for the hard
scattering process. It is suitable both for photo-production
of heavy quarks as well as for deep inelastic scattering. The
typical time needed to generate one event is ∼ 0.03 sec,
which is similar to the time needed by standard Monte
Carlo event generators such as LEPTO [5] or PYTHIA
[6].

4.1 The unintegrated gluon density

The unintegrated gluon density xA(x, k2
t , q̄) is obtained

from a forward evolution procedure as implemented in
Smallx[17,18]. Due to the complicated structure of the
CCFM equation, no attempt is made to parameterize the
unintegrated gluon density. Instead, the gluon density is
calculated on a grid in log x, log kt and log q̄ of 50×50×50
points and then linear interpolation is used to obtain the
gluon density at values in between the grid points.

From the initial gluon distribution as used in Smallx
(including the same collinear cutoff and normalization) a
set of values x0 i and kt0 i are obtained by evolving up
to a given scale log q̄ using the forward evolution pro-
cedure of Smallx. This is repeated 107 times thus ob-
taining a distribution of the unintegrated gluon density
xnA(xn, k

2
t n, qt n) for the slice of phase space with a given

q̄ (q̄ > qt n). To obtain a distribution in log q̄, the above
procedure is repeated from the beginning 50 times for the
different grid points in log q̄ up to q̄ = 1800 GeV.

4.2 Backward evolution formalism

In the backward evolution we start from the quark box,
with an upper angle given by Ξ and a gluon four-vector

kn (see Fig. 1) and go successively down in the ladder until
we end up at gluon k0. Thus the first step is to reconstruct
from Ξ and kn the vectors qn = pn/(1−zn) and kn−1 = ki,
with zn = xi/xn. In the next step ki, qn play the role of
kn, Ξ from the first step. In the further steps ki−1, qi play
the role of ki, qi+1 and so on, until the gluon k0 is reached.

The differential form of the evolution equation (15)
gives the (non-normalized) probability [15], that during a
small decrease of q̄, a t-channel gluon k′ with momentum
fraction x′ becomes resolved into a t-channel gluon k with
momentum fraction x = zx′ and an emitted gluon qi.
During a small decrease of q̄, a gluon k may be unresolved
into a gluon k′. The normalized probability for this to
happen is given by

∆s(q̄, Q0)
xA(x, kt, q̄)

d

(
xA(x, kt, q̄)
∆s(q̄, Q0)

)

=
dq̄2

q̄2

∫
dz
dφ

2π
P̃ (z, q̄/z, kt)

x′A(x′, k′
t, q̄/z)

xA(x, kt, q̄)
. (20)

This equation can be integrated between q̄ and q giving:

log
(A(x, kt, q)

A(x, kt, q̄)
∆s(q̄, Q0)
∆s(q,Q0)

)

= −
∫ q̄

q

dq′2

q′2

∫
dz
dφ

2π
P̃ (z, q′/z, kt)

x′A(x′, k′
t, q

′/z)
xA(x, kt, q′)

.(21)

Thus the probability for no radiation in the angular or-
dered region between q̄ and q is just given by a new effec-
tive form factor for the backward evolution:

Pno rad(q̄, q) = exp

(
−
∫ q̄

q

dq′2

q′2

∫
dz
dφ

2π
P̃ (z, q′/z, kt)

×x′A(x′, k′
t, q

′/z)
xA(x, kt, q′)

)
. (22)

In principle one could equally well just use

Pno rad(q̄, q) =
A(x, kt, q)
A(x, kt, q̄)

∆s(q̄, Q0)
∆s(q,Q0)

, (23)

which is more akin to the backward evolution approach
of [16]. One can see that this is the correct probability
since from (14) it corresponds to the fraction of A(x, kt, q̄)
which comes from angles below q. Though (22) looks more
complicated than (23), it turns out that the former is
numerically more suited to our particular situation, be-
cause it is less sensitive to imprecisions and irregularities
of A(x, k, q) (which we recall is generated by a forward
evolution Monte Carlo approach). The standard DGLAP
backward evolution equation would be obtained from (20)
by setting ∆ns = 1 in the splitting function P̃ and replac-
ing the argument q̄/z in the parton density function in the
r.h.s. of (20) with q̄.

In the CCFM backward evolution, starting with the
gluon kn, we need to reconstruct the momentum of the
next emitted gluon qn as well as that of the next exchanged
gluon, kn−1. This is done as follows. We start with q̄ = Ξ.
Then
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Fig. 2. Comparison of the cross section obtained from the
backward evolution Monte Carlo Cascade (solid line) with
Smallx (dashed line) both at parton level only. The upper
plots show the cross section as a function of the quark rapid-
ity ηq, the quark transverse momentum pt and the transverse
momentum of the quark pair ppair

t . The lower plots show the
cross section as a function of the gluon transverse momentum
kt, and the multiplicity and transverse energy flow of the glu-
ons from the initial state cascade as a function of the rapidity η

a. We check whether there is any evolution to be done.
The probability that the evolution should stop straight
away is given by

A0(xn, k
2
tn, q̄)

A(xn, k2
tn, q̄)

, (24)

i.e. the fraction of the unintegrated gluon distribution
that comes from the initial distribution.

b. If the evolution continues then the quantity q′ ≡ |znqn|
is determined by choosing a random number R
uniformally distributed between 0 and 1 and solving
Pno rad (q̄, q′) = R for q′.

c. The values of zn and φn are then chosen randomly
according to the distribution given in the inner integral
of (22). In doing so we implicitly have to reconstruct
kn−1 as well.

This completes the reconstruction of a single branching.
The procedure is then repeated with q̄ = qn and n → n−1,
and so on, until the evolution stops (step a).

In practice the numerical calculation of the integrals
in the effective form factor (22) would be too time con-
suming, since they involve the non-Sudakov form factor in
the splitting function and also the ratio of the structure
functions. A simple solution to the problem is the veto
algorithm described in [15]. The essential point is to find
a simple analytically integrable function, which is always
larger than the integrand in (22). The splitting function
P̃ (z, q′, kt) can be replaced with:
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Fig. 3a–d. Comparison of quantities of the initial cascade
obtained from the backward evolution Monte Carlo Cascade
(solid line) with Smallx (dashed line) both at parton level
only; a shows the splitting variable z, b gives the transverse
momentum kt, c shows the transverse momentum of the emit-
ted gluon qt, and d shows the ratio kt/qt

P appr
gg (zi, k

2
ti) =

ᾱs(kti)
zi

+
ᾱs(qt min)
1− zi

≥ P̃gg . (25)

The limits on zi are given by:

xi ≤ zi ≤ 1− xiQ0

qi+1
,

which is a larger range than the true one: zi < 1−Q0/qi
(but qi is not determined at this stage). Next, the struc-
ture functions which appear in the Sudakov form factor
are replaced with their maximum and minimum values for
x and x′ > x. Thus a simple analytically calculable form
of the Sudakov form factor is obtained:

Psimple
no rad = exp

(
−
∫ q̄

q

dq′2

q′2

∫
dzP appr

gg (z, kt)

×x′Amax(x > x′)
xAmin(x, kt)

)
< Pno rad . (26)

After qi and zi is generated, the true limits on z can be
applied: xi ≤ zi < 1 − Q0/qi. If a zi lies outside the
true region, a new set of qi and zi is generated. Having
generated the branching variables according to zi, kti−1
and qi according to (26) and (25), a branching is accepted
with a probability according to the ratio of the integrands
of P (via (22)) and Psimple

no rad (via (26)), as formulated in
the veto algorithm [15].

As mentioned already above, the true virtuality of the
t-channel gluons can only be reconstructed after the full
cascade has been generated. By going from the last gluon
(closest to the proton), which has virtuality k2

0 = kt0/(1−
x0), forward in the cascade to the hard scattering process,
the true virtualities of the k2

i are reconstructed. At the
end, the gluon entering to the quark box will have a larger
virtuality than without initial state cascade. Thus a check
is performed as to whether the production of the quarks
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Fig. 4. Comparison of the structure function F2

as obtained from the backward evolution Monte
Carlo Cascade with H1 data [42]

is still kinematically allowed. If not, the whole cascade is
rejected, and the event without the cascade is kept. This
typically happens about 1% of the time.

4.3 Comparison with the forward evolution cascade
in Smallx

In this section, the reconstruction of the parton level cas-
cade obtained in the backward evolution approach, as de-
scribed above, is compared to that of the forward evolution
in Smallx. At parton level, both approaches are expected
to be identical, but small differences can occur due to the
finite grid size used to define of the unintegrated gluon
density. As already mentioned the virtuality of the gluon
entering the hard scattering process is only known after
the complete reconstruction of the initial state cascade,
which could also result in small differences to the forward
evolution approach. In the following comparison, we have
used bb̄ photoproduction at

√
s = 300 GeV. In Fig. 2 the

cross section as a function of the rapidity (all rapidities are
given in the laboratory frame) of the quarks ηq, the quark
transverse momentum pq

t , the transverse momentum of
the quark pair ppair

t and the gluon transverse momentum
kt obtained from Cascade (solid line) are compared to
the ones obtained from Smallx (dashed line). The quan-
tities related to the hard scattering matrix element agree
very well. Also shown in Fig. 2 is a comparison of the mul-

tiplicity and the transverse energy flow as a function of
rapidity, and perfect agreement is again found between
the backward and forward evolution approaches. In Fig. 3
a more detailed comparison of the kinematics in the initial
state cascade is performed. We compare the values of the
splitting variable z, the transverse momenta kt and qt as
well as kt/qt within the two approaches.

Thus we have described a backward evolution
approach, which is fast and already implemented in the
hadron-level Monte Carlo program Cascade, and which
reproduces perfectly the parton level configurations ob-
tained from Smallx. This is the first time that a prac-
tical CCFM-based small-x Monte Carlo event generator
has been constructed.

5 Results

In this section we compare predictions from Cascade
with recent measurements made at HERA. The free pa-
rameters of the initial gluon distribution were fitted to de-
scribe the structure function F2(x,Q2) in the range x <
10−2 and Q2 > 5 GeV2. The structure function F2(x,Q2)
as calculated from Cascade is compared to a larger range
of data in Fig. 4. Reasonable agreement with the data is
observed at small x and Q2. Deviations from the data are
seen at larger x and Q2, which can be attributed to the
quark contributions, which are still missing here.
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Fig. 5a–d. The cross section for
forward-jet production obtained from
the Monte Carlo Cascade at hadron
level (solid line); a–c The cross section
for forward-jet production as a function
of x, for different cuts in pt compared
to H1 data [43] a–b and compared to
ZEUS data [44] c; d The cross section
for forward-jet production as a function
of E2

T /Q2 compared to [45]

In Fig. 5 the cross section predicted for forward-jet pro-
duction is shown and compared to measurements done at
HERA. We observe a reasonable description of the data.
However, the prediction lies above the data, which could
indicate that some relevant sub-leading effects are still
missing.

Studies based on a variety of QCD-based Monte Carlos
have demonstrated that the high pT tail of charged par-
ticle transverse momentum spectra is sensitive to small x
dynamics of the parton radiation and that there is rela-
tively little dependence on the particular model of hadro-
nisation that is used [46,47]. Fig. 6 shows the pT distri-
butions of charged particles as measured by H1 [48] for
DIS events with 3 GeV2 < Q2 < 70 GeV2 in the rapidity
range 0.5 < η < 1.5. The prediction from Cascade gives
a good description of the data, whereas DGLAP based
Monte Carlo calculations fail to describe the data at small
x and large pt.

Effects of small x parton dynamics could also show
up in photo-production of charm mesons. Recent mea-
surements [49] show significant deviations from LO and
NLO QCD calculations and also from hadron-level Monte
Carlo predictions. In Fig. 7a we show the cross section of
D∗ production as a function of the transverse momentum
pD∗

t using Cascade and compare it with the measure-
ment of ZEUS [49]. For comparison we also show the pre-
diction from Rapgap. In Fig. 7b the xγ cross section is
shown. In Fig. 8 we show the D∗ cross section as a func-
tion of the pseudo-rapidity ηD∗

for different regions in pt.
In all distributions of D∗ photo-production we observe a

Fig. 6. The transverse momentum distribution of particles
in different bins of rapidity. The prediction from Cascade
(solid line) at hadron level is compared to the measurement
of H1 [48]. For comparison the prediction from the DGLAP
based Monte Carlo Rapgap (dashed line) is also shown
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Fig. 7a,b. The differential cross sec-
tions of D∗ photo-production [49] for
dσ/dpD∗

t (a) and dσ/dxγ (b). The solid
line shows the prediction from Cas-
cade while the dashed line shows the
prediction from Rapgap

good description of the experimental data, whereas there
is disagreement between the data and the Rapgap Monte
Carlo predictions.

Also interesting is the cross section for bb̄ production
as measured at HERA by H1 [50]:

σ(ep → e′bb̄X) = 7.1± 0.6(stat.)+1.5
−1.3(syst.) nb

to be compared with the prediction from Cascade:

σ(ep → e′bb̄X) = 5.2+1.1
−0.9 nb.

The central value is given for mb = 4.75 GeV, and the er-
rors are those associated with a variation of mb by
∓0.25 GeV. The NLO calculations predict a cross sec-
tion which is about a factor of 2 below the measurements.
The ZEUS collaboration published a measurement of bb̄
production [51] for the region pt > 5 GeV and |ηb| < 2:

σ(ep → e′bb̄X) = 1.6± 0.4(stat.)+0.3
−0.5(syst.)

+0.2
−0.4(ext.)

= 1.6+0.54
−0.75 nb

where we have added all errors quadratically in the last
expression. This can be compared with the prediction from
Cascade:

σ(ep → e′bb̄X) = 0.88± 0.08 nb.
Again we have used mb = 4.75∓ 0.25 GeV. The predicted
cross section is still within the total error of the mea-
surement. The NLO prediction as given in [51] is σ =
0.64+0.15

−0.1 nb, where the errors are those associated with
a variation of mb = 4.75 GeV by ∓0.25 GeV and of the
factorisation and renormalisation scales by a factor of 1/2
and 2.

6 Conclusion

We have shown that a backward evolution approach us-
ing the CCFM evolution equation is possible, and that
it works, producing the same results as the forward evo-
lution used to solve the CCFM equation. The advantage
of backward evolution is the easy implementation into a
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Fig. 8. The differential cross section of D∗ photo-production
[49] dσ/dηD∗

for different regions of pD∗
t . The solid line shows

the prediction from Cascade and the dashed line is the pre-
diction from Rapgap

full hadron-level Monte Carlo program Cascade, which
is compared to recent measurements of small x hadronic
final state properties at HERA. We have found that all
small x signatures can be reasonably well described within
one consistent approach. By performing only a fit to the
structure function F2(x,Q2) we obtain simultaneously a
good description of a variety of processes which could not
be described within DGLAP: the forward-jet cross sec-
tion, the high pt particle spectra, charm production and a
reasonable agreement with the measured bb̄ cross section.
This shows that the CCFM evolution equation is indeed
a good starting point for a consistent description of small
x phenomena.
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